
The Real-Time Application Interface

Karim Yaghmour
karym@opersys.com

Abstract

The Real-Time Application Interface provides Hard
real-time capabilities in a Linux environment. It
provides FIFO, semaphore, mailbox, message and
RPC communication primitives and includes a
Posix compliant subsystem. Hooking on to Linux
is provided via a Real-Time Hardware Abstraction
Layer, hence diminishing kernel intrusion.

Built on top of RTAI, the LXRT module provides
for seamless integration of normal Linux processes
and RTAI-bound real-time tasks. It enables these
two types of tasks to communicate symmetrically
while enabling normal Linux processes to enter the
real-time execution domain using a single system
call and provides memory protection and trap han-
dling for hard real- time tasks. RTAI is supported
by various other projects including the Linux Trace
Toolkit and RTNet.

1 Introduction

General purpose operating systems (GPOSes) are
designed to offer most applications a “fair” share
of the system resources. Different mechanisms are
implemented to ensure that this sharing is done ef-
ficiently. Mainly, sharing is enforced using aging
schemes and execution precedence of important sys-
tem code. This design philosophy is very well suited
to the workstation and server environments where
it finds its roots. For systems where real-time deter-
ministic response times are critical, this approach is
ill adapted and, in essence, does not fit the require-
ments.

In designing such systems, real-time operating sys-
tems (RTOSes) may be useful and are in fact often
used to guaranty such things as interrupt response
times, context switching and priority inheritance.
The problem with these OSes however is that they

very often support a much more restricted set of
hardware platforms and devices compared to their
general purpose counterparts. Not to speak of the
cost of quality RTOSes and their restrictive distri-
bution licensing.

It is in this context that a hybrid form of operat-
ing systems was born where a GPOS is provided
with the control of most hardware resources but is
itself subject to the control of a deterministic hard-
real-time OS which enforces strict scheduling poli-
cies within the context of the GPOS. One such hy-
brid, the DIAPM Real-Time Application Interface,
originated from the work done by Paolo Montegazza
in using MS-DOS as the basis of a real-time oper-
ating system for the purposes of his research in the
’80s. At the time, the real-time OS ran as a TSR1

program.

With the advent of mainstream 32-bit OSes it be-
came desirable to have such capabilities provided
on such systems. As the Linux kernel was becoming
more and more popular and its sources were avail-
able, an attempt was made to port the previously
available functionality to it. Yet, at the time, the
Linux 2.0.xx kernel wasn’t deemed mature enough
to support the RTHAL (Real Time Hardware Ab-
straction Layer) necessary for the undertaking. But
this was soon overcome as the RTLinux project ef-
fectively diverted control from Linux for its real-
time needs. Hence, a DIAPM-RTL implementation
was born which used the NMT patch as the basis of
its functionality.

With the release of Linux 2.2.xx in early 1999 it
became possible to implement the RTHAL concept
since the hardware management interface was prop-
erly layered. This enabled minimal modifications to
the kernel while maintaining the dynamic loading of
the real-time executive as a common kernel module.
By March of the same year the first release of RTAI
was made. Since then, RTAI has seen many incre-
ments and now includes many widely used commu-

1Terminate and stay resident.

RTAI Core

Hardware

Linux

RTHAL

A

B

B

Figure 1: Control flow from and to the hardware interrupt facilities.

nication methods, is supported by a wide-variety of
projects and runs on both the i386 and the PowerPC
architectures. It is also widely used to implement
real-time systems and is supported by a variety of
vendors.

This paper will focus on presenting the different ca-
pabilities of RTAI, how they work, how they can be
used and how they interact. Section 2 will discuss
the intrinsics of RTAI’s functionality. Section 3 will
discuss the different schedulers provided with RTAI.
Section 4 will present the different communication
facilities and other services implemented by RTAI.
Section 5 will discuss the LXRT symmetrical com-
munication facility. Last, section 6 will look at the
various extensions being made to RTAI and the var-
ious future directions of development.

2 Intrinsics

Real-time systems are designated as such because of
their deterministic response times to outside events.
Yet, we know that GPOSes are not capable of pro-
viding for such requirements. The Linux kernel,
however efficient it may be, is no exception. It
is, although, possible to provide a RTOS running
alongside Linux to provide for real-time needs. To
accomplish this hybrid configuration it is necessary
to provide for Linux not to divert critical hardware
events from the RTOS as these are the events that
will dictate the response time of the system.

2.1 Taking control from Linux

As critical hardware events mostly take the form of
outside interrupts it is the occurrence of these in-
terrupts that will need to be diverted from Linux
without hindering its normal behavior. In addi-
tion to diverting the interrupts from Linux it will
also be important to ensure that Linux is not in
a position to control the occurrence of these inter-
rupts. Hence, the RTOS will have to be provided
with means to divert these two control mechanisms:
the flow from the interrupts to Linux and the con-
trol Linux has of the interrupts. In RTAI, this is
done using the RTHAL which is the only addition
made to the Linux kernel in the form of a 100 line
(approximately) patch.

Figure 1 presents the RTHAL. In the case where
RTAI is not loaded, case A, then Linux is di-
rectly interfacing with the hardware. When RTAI
is loaded, case B, control of the interrupts goes
through RTAI’s core in either direction. To achieve
this, the RTHAL is made up of function pointers
which will point to Linux’s native functions and ta-
bles initially and which will be diverted to RTAI’s
internal functions and tables when RTAI is loaded.

2.2 Managing the diverted resources

Once in control, RTAI will seamlessly provide in-
terrupt control to and from Linux and, in addition,
will provide a number of abstractions and facilities
to real-time tasks. These include interrupt alloca-
tion and timer control. Also, RTAI provides a way

Interrupt Return

Linux Intr Ret

RTAI Dispatcher

RT Int Handler

Linux Dispatcher

Interrupt Occurrence

SRQ Dispatcher

Return to Program Execution

Figure 2: Path followed upon the occurrence of an
interrupt in an RTAI/Linux system.

to call on the non-deterministic Linux facilities us-
ing System Requests (SRQs). This facility can also
be used to dynamically extend the services provided
to user-space programs.

To provide virtual interrupt control to Linux, RTAI
implements replacements to the cli()/sti() couple.
These replacements are actually RTAI functions
which will set flags within internal maintained struc-
tures to keep record of whether Linux would like to
be informed of incoming interrupts (sti) or whether
he’s ignoring them (cli). Since, in normal circum-
stances, all pending interrupts would be signaled
upon the occurrence of a hardware sti, RTAI imple-
ments such a mechanism by registering all pending
Linux interrupts and signaling them at the appro-
priate time.

Figure 2 illustrates the path an interrupt may fol-
low from the moment it occurs to the moment
where control is returned to program execution.

When a global interrupt occurs (meaning through
the 8259 PIC), the first function encountered is dis-
patch global irq(). If a real-time handler is regis-
tered for this interrupt, it will be called here. Once
done, or if there are no handlers, a verification will
be made as to whether Linux is expecting this in-
terrupt or not and whether he has “disabled in-
terrupts” (remember that such requests are caught
by RTAI). If interrupts are enabled, the Linux in-
terrupt dispatcher will be called upon. Otherwise,
RTAI immediately exits the interrupt context and
returns to normal program execution. When the
Linux interrupt dispatcher is summoned, it may be
followed by the system request dispatcher which will
call upon all SRQs which may have been activated
by an interrupt handler. It is using this facility
that RTAI modules may have access to the stan-
dard non-deterministic kernel facilities. Once SRQs
are called, if any, RTAI proceeds on jumping to the
normal ret from intr code to finish the normal re-
turn sequence.

3 Schedulers

The RTAI schedulers use the facilities and abstrac-
tions provided by the core RTAI module described
in the previous section to provide high-level pro-
gramming abstractions to the programmer such
as tasks and various communication mechanisms.
There are three schedulers that come with RTAI: a
uniprocessor (UP) scheduler, an SMP scheduler and
a Multi-Uniprocessor (MUP) scheduler. All these
schedulers can be used either in one-shot mode or
in periodic mode. These modes relate to the way
the timer is programmed and take their roots from
the PC architecture where the 8254 timer may be
programmed in various ways.

On that architecture, the timer may be programmed
to emit interrupts at fixed time-intervals, in periodic
mode, or may be reprogrammed at each interrupt,
in one-shot mode. Periodic would seem ideal as it
costs approximately 3 microseconds to reprogram
the timer, but it may be ill-adapted to certain situa-
tions where intervals may vary. Hence the one-shot
mode which has also the advantage of reprogram-
ming intervals using the CPU frequency and not
the timer frequency which, on the PC architecture,
is considerably lower.

On the PowerPC architecture, the existing timing

facility is embodied by the decrementer and pro-
vides a mechanism akin the one-shot mode of the
8254 found on the PC. In actuality, the processor’s
internal counter is used to generate an interrupt at
a given time and needs to be reprogrammed upon
firing. Periodic mode is therefore attained on this
architecture by reloading a constant value.

The following subsections provide details about each
scheduler available. Keep in mind that regardless
of the differences, the facilities provided by RTAI
remain the same and need not be used differently
from one scheduler to the next.

3.1 Uniprocessor scheduler

The uniprocessor scheduler enacts a scheduling al-
gorithm to select a task to be run on a single CPU.
As such, its operation is very much straight forward:
whichever process has the highest priority gets the
CPU. In effect, it is a multi-list priority based sched-
uler with support for priority inheritance. In this
scheme, Linux is a real-time task as any other but
remains at the lowest priority level.

As for the implementation of the scheduler proper,
it is split between two different yet complimentary
functions: rt schedule() and rt timer handler().
The former is invoked by the different facilities to
enforce a scheduling change to reflect a modification
in the state of a process. The later is exclusively
targeted at dealing with the timer interrupt. At
first it may seem that these functionalities should be
grouped together to form a single scheduling func-
tion but given the slightly different approaches and
uses, a choice was made to keep them separate.

3.2 SMP scheduler

The SMP scheduler differs from the UP scheduler in
that it can schedule tasks to more than one CPU.
This involves different degrees of additional services
such as the capability to set CPU affinity for a task
or to assign an IRQ to be dealt with on a specific
CPU. Also, contrary to its UP counterpart on the
PC architecture, the SMP scheduler is not limited
to the usage of the 8254 as the single source of timer
interrupts since the APIC possesses its own timer.
The SMP scheduler remains, though, a priority-
driven scheduler.

3.3 Multi-Uniprocessor scheduler

As the name suggests, the multi-uniprocessor sched-
uler views a multiprocessor machine (SMP) as being
a collection of many uniprocessors. This means that
each CPU can have its timer programmed differ-
ently. Hence, one could have a CPU running in peri-
odic mode while another running in one-shot mode.
This is very useful for some types of applications
but involves setting CPU affinity at task creation,
although it may be migrated later using the proper
facilities.

4 Communication facilities and other
services

One of the main features of RTAI is the wide array
of communication facilities and other services made
available to the programmer throughout the differ-
ent schedulers while providing identical interfaces.
Some of these services are part of the scheduler
modules as they are simple enough in implementa-
tion while providing basic communication facilities.
Others, more complex or less common, are imple-
mented within their own separate modules. The fol-
lowing subsections discuss each of the services pro-
vided by RTAI.

4.1 Mailboxes

Mailboxes provide for a way to exchange data be-
tween multiple tasks using a pointer to a mailbox
structure as the reference point. Typically, this will
be used to send n bytes from a given buffer to a spe-
cific mailbox. On the receiving end, the reader can
read m bytes from the mailbox into its own buffer.
The following is a sample of the services provided
by the mailbox facility:

• rt mbx init() Initializes a mailbox with a given
size.

• rt mbx delete() Deletes the resources used by a
mailbox.

• rt mbx send() Sends a sized message to a given
mailbox.

• rt mbx receive() Receives a sized message from
a mailbox.

Timed and conditional versions of the send/receive
primitives also exist. These can be used to provide
the programmer with greater control over the way
his requests are dealt with by the system.

4.2 Messages and RPCs

Unlike mailboxes, messages and RPCs are task-
based. One sends a message to or receives a mes-
sage from a task. There is, therefore, no need to
instantiate or initialize any structures or identifiers
proper to messages or RPCs other than ensuring
that the recipient or source of messages is actually
a live task. This is somewhat explicit as all the calls
to this facility require the passing of a pointer to
the designated task. Hence, if we are waiting for
a message from task X, we need to pass the mes-
sage API the pointer to task X’s structure. It is
still possible to receive a message from any task by
passing a NULL pointer to the message API when
asking for such a reception. Also, the messages be-
ing transferred are not variable sized message, but
are fixed size unsigned integer values. The following
is a sample of the services provided by the message
and RPC interface:

• rt send() Sends a message to the given task.

• rt receive() Receives a message from a given
task.

• rt rpc() Sends a message to a given task and
expects a reply.

• rt isrpc() Determines whether the given task is
waiting for a response to an RPC.

• rt return() Replies to an RPC from a given
task.

Some of these services have timed and conditional
variants. It is the case of the send, receive and RPC
calls which may need to be used differently by the
programmer.

4.3 Semaphores

Semaphores are a basic synchronization mechanism
that enables multiple tasks to coordinate their work

in a coherent way. In RTAI, semaphores are iden-
tified using their structures. Hence, tasks wanting
to synchronize their work using a given semaphore
will need a pointer to that semaphore’s structure.
In all other respects, RTAI semaphores behave the
same way as conventional semaphores do. Here is a
sample of the semaphore API:

• rt sem init() Initializes a semaphore to a given
value.

• rt sem delete() Deletes a given semaphore.

• rt sem signal() Signals a semaphore.

• rt sem wait() Waits on a semaphore.

The wait call has timed and conditional variants
which may be useful in some situations.

4.4 FIFOs

Contrary to the three previous facilities, the FIFO
facility is a separate module that is optionnaly
loaded if useful. As its name implies, this facility
provides tasks with a way to put data within a buffer
which will then be read on a first-in-first-out basis.
The main usage of the FIFO module is the sharing
of data from/to user space to/from real-time tasks.
When used from within a kernel module, the FIFO
API identifies a FIFO using its ID. In user space,
this ID corresponds to an entry in the /dev direc-
tory. Fifo 1 is visible as /dev/rtf1 from user space,
for example. Using this, a real-time task can collect
data in real-time while making this data available
to a normal Linux process that is not bound by any
real-time constraint. Data acquisition is one of the
uses of this facility. From user-space, a task can
communicate through this facility by using the con-
ventional open, read, write, close and other services
of the Unix file API. To the user application, the
FIFO is just another file in the system.

The following is a sample of the API available to
modules:

• rtf create() Creates fifo with a given size and
ID.

• rtf destroy() Destroys a fifo.

• rtf reset() Empties the content of a fifo.

• rtf put() Puts data in a fifo.

• rtf get() Gets data from the fifo.

• rtf create handler() Associates a handler to
deal with the addition of data to the fifo in an
asynchronous way.

In addition to these services, semaphore primitives
have been added to provide for the synchronization
of the access to the fifos. Also, it is now possible to
name the fifos being created in order to increase the
flexibility of the facility. Using this, identification
of a correspondent depends on knowing the name of
the fifo he uses.

4.5 Shared memory

Another way of sharing data between execution do-
mains is through shared memory. To this end, RTAI
provides a shared memory facility. Basically, this
module provides for the allocation and freeing of
memory regions. Identification of these memory re-
gions is done using a name scheme which will ensure
that further allocation of the same name will only
result in the mapping of the designated region to
the process’s memory map while providing the caller
with a pointer to said region. As with the FIFO fa-
cility this is an optional module that, once loaded,
is usable by both user-space applications and real-
time tasks. Communication of user space requests
to the shared memory module is provided by the use
of the SRQ mechanism described above.

4.6 Posix

As with other fields of computer science, the real-
time field possesses its share of standards. One
such standard is the Posix standard for real-time.
Actually, there are multiple Posix standards for
real-time. The RTAI Posix module implements the
1003.1c pthreads standard and a part of the 1003.1b
standard, the message queues. It is not the inten-
tion of this paper to discuss the APIs provided by
the Posix standard, but the interested reader is in-
vited to take a look at the extensive documentation
available on RTAI’s web-site.

4.7 Memory management

A memory management facility may be seen as the
wrong type of service to provide in a deterministic
hard-real-time system, but it has some very prac-
tical uses. Least of which, support for higher-level
languages like C++ which require the existence of
the new and delete operators. The algorithm used
by the memory management unit has been designed
to provide for real-time memory allocation. This
works by initially reserving a chunk of memory from
the kernel using the conventional means. There-
after, chunks of memory are provided upon request
to the callers of rt malloc() using a deterministic
algorithm. Freeing of the request memory is done
using the rt free() call. The new and delete mecha-
nisms are based on those basic memory management
primitives.

4.8 Watchdog

In an effort to further insure that RTAI is a safe
programming environment, a watchdog facility has
been implemented. This facility can be used to in-
sure that no one task will freeze the system because
of its misbehaviors. Using the watchdog facility,
it is possible to ensure that infinite loops and task
scheduling overruns2 do not handicap the system’s
ability to continue operating by enforcing a con-
figurable reaction to such occurrences. It is there-
fore possible to suspend offending tasks or even kill
them.

5 LXRT symmetrical interface

Of all the services and abstractions provided by the
different RTAI modules, LXRT remains the most
flexible and the most complex of them all. By
providing the programmer with a symmetrical pro-
gramming interface, LXRT integrates the best of
both worlds in the hybrid GPOS/RTOS combina-
tion. In effect, it provides user applications with
means to communicate transparently with real-time
tasks and vice-versa. Figure 3 shows the possible
communication interactions between tasks belong-
ing to different execution domains. Note that tests

2When a task is rescheduled before it had the time to
complete its intended job.

Kernel Space

User Space

Figure 3: Possible LXRT symmetrical communica-
tion.

have shown that communication through LXRT is
very fast.

5.1 User space services

Communication from user space to kernel space is
possible through a software interrupt handled by
LXRT. Using this software interrupt, user space
tasks can call on exported RTAI services in very
much the same way they call on exported Linux
system calls. Among the services exported to user-
space using LXRT, we find all the services previ-
ously only available to loadable modules such as
mailboxes, messages, RPCs and semaphores. In ac-
tuality, the LXRT API makes it possible to render
usage of these services to be completely transpar-
ent to the context. In other words, one can use the
same functions and semantics in either user space
or kernel space with the same effect. The only dif-
ference being the usage of a main() function instead
of an init module() and cleanup module() interfaces.
This makes it possible to effectively test real-time
applications in user space prior to inserting them
as kernel modules. However, note that user space
applications using LXRT to access RTAI services
are not hard-real-time tasks, they are only soft-real-
time tasks. Although, as we will see in the next
section, they can become hard-real-time tasks us-
ing LXRT. In any case, prior to using any other
LXRT services, the user space applications need to
instantiate a real-time shadow task which will be
used to maintain coherent data structures within
RTAI while dealing with intertask communication
and scheduling.

With that said, LXRT is not limited to the prede-
fined set of exported services and may be extended
quite easily by providing an alternative function ta-
ble which includes the initial table while adding to
it the extra entries required. Such an extension is
used by the RT COM module to provide real-time

com port communication to tasks through LXRT.

5.2 Stealing tasks from Linux

It was originally thought that with the hybrid
GPOS/RTOS configuration tasks could either be-
long to one domain or the other and would be
programmed differently depending on the domain
they belonged to. The initial user space services
provided by LXRT blurred this divide. The addi-
tion of a routine enabling normal GPOS tasks to
become RTOS tasks takes this further by provid-
ing a means for normal Linux processes to become
hard-real-time bound tasks through the use of the
rt make hard real time() call. Contrary to loadable
modules, such real-time tasks run in their own iso-
lated memory space and, hence, provide for memory
protection of real-time tasks.

Process stealing is done in two steps. The first part
of the transition is done as part of the call made
by the Linux process and consists of the following
sequence:

1. Disable global interrupts.

2. Set Linux process state to
TASK LXRT OWNED.

3. Raise the priority of the idle task (this is nec-
essary for the second part of the transition).

4. Enqueue the function dealing with the second
step as part of the normal Linux IMMEDIATE
tasks queue.

5. Mark the IMMEDIATE bottom half to run.

6. Call the Linux scheduler.

7. Enable global interrupts.

8. Reset idle task to its original priority.

After this first step, the Linux process is in a state
of limbo and will remain in this state until the sec-
ond part of the stealing process is carried out. This
second part will come to run within the standard
bottom-half framework in Linux and consists of the
following:

1. Disable global interrupts

2. Set the real-time task’s state as READY

3. Run the LXRT scheduler

4. Enable global interrupts

The LXRT scheduler will take the necessary steps
to insure that the task runs in a consistent memory
configuration and will interact with the other RTAI
modules to provide for scheduling of the task as if
it were yet another RTAI task.

Just as it was possible to transition into hard-real-
time space, it is possible to return to soft-real-time,
as a normal Linux process, using the inverse of the
above steps.

5.3 Exception handling

Given the memory protection possible with the pro-
cess stealing method and the growing need to full
(and fool) proof real-time programming, it becomes
useful to implement exception handling to enforce
protection policies and provide for other capabili-
ties such as debugging. For this purpose, LXRT now
handles processor exceptions. As RTAI is the first to
receive processor exceptions, it provides for identify-
ing the current execution context and passes excep-
tions onto the Linux exceptions handlers whenever
necessary.

5.4 QNX-like services

As some RTOSes have been widely used and
adopted for different uses, it is desirable to being
able to use the same functionalities on open real-
time kernels. Such is the case with the the syn-
chronous IPC services provided in LXRT akin sim-
ilar QNX services. This service enables tasks to
communicate together synchronously using name
schemes to locate recipients. In addition to syn-
chronous communication, this facility also adds raw
proxies functionality. Proxies are real-time tasks
which can send a predefined message to a waiting
task and hence trigger a certain behavior. Proxies
may be used within interrupt handlers to signal a
certain event to a waiting task; provided that the
trigger is the last action taken by the handler.

The following is a sample of the services provided
by this facility:

• rt Name attach() Attaches a name to the cur-
rent task.

• rt Name locate() Locates a task identifying it-
self with the given name.

• rt Name detach() Detaches a name from a
given task.

• rt Send() Send a message to a task and wait
for an answer.

• rt Receive() Receives a message from a given
task.

• rt Reply() Reply to a received message.

• rt Proxy attach() Attaches a proxy to a given
task.

• rt Proxy detach() Detaches the proxy of a given
task.

• rt Trigger() Triggers the action of a proxy.

5.5 Unix Server

As real-time tasks do not have access to standard
Linux services many ways have been provided to cir-
cumvent this limitation, the unix server capability
from LXRT is one of them. By starting a unix server
prior to entering hard-real-time mode, a Linux pro-
cessor can have access to some of the most com-
monly used Linux services. Starting a unix server
is done through the rt start unix server() call. In
effect, starting a unix server forks the current pro-
cess to execute an agent who will be in charge of the
non-deterministic communication with Linux. Ex-
changes between the agent and the real-time tasks
are done via a shared memory region to minimize
overhead.

The following services are provided by the unix
server:

• rt scanf()

• rt printf()

• rt open()

• rt close()

• rt write()

• rt read()

• rt select()

• rt lseek()

• rt sync()

• rt ioctl()

Note that calls to Linux services via the unix server
remain non-deterministic and the caller will have
to wait for Linux to complete servicing the request
before continuing its operations.

5.6 Asynchronous I/O

The asynchronous I/O recent addition to LXRT
provides programmers with an asynchronous I/O
based on the glibc sources but adapted to provide
the same functionality within the LXRT framework.
This provides programmers with the following ser-
vices:

• aio read()

• aio write()

• aio open()

• aio close()

• aio return()

• aio cancel()

• aio fsync()

To deal with I/O requests, threads are started and
handled by LXRT to carry out the requested service.

5.7 User library (liblxrt)

In an effort to provide developers with a way to
develop their applications without having to run a
modified kernel or RTAI, a user library LXRT has
been provided. This library provides for standard
interfacing with LXRT for development and enables
development to be carried out in parallel.

6 Future directions

As RTAI is constantly evolving, there are different
future directions which will be investigated while
continuing to improve the currently available facili-
ties. The following is a non-exhaustive list of things
to come:

• More ports of RTAI (including ports of LXRT)
to other architectures. As it stands now, prime
targets are the MIPS and the ARM processors,
but others are also being considered. As for
LXRT, it is currently functional on i386 only
and there is a desire to have it running on the
PPC too.

• Extensive framework for C++ programming
for RTAI. This is not limited to having C++
code run with RTAI, but having a real frame-
work that would be usable both from a loadable
module standpoint and from a user application
standpoint.

• Real-time RAM filesystem.

• Flash-based filesystem.

• POSIX I/O layer to support filesystem.

• Integration of RTNet and socket layer.

• Integration of Linux Trace Toolkit hooks.

• Using RTAI services on RTLinux.

• Standalone RTAI.

• Port uClibc to RTAI kernel space.

• Fix uClibc to work with LXRT seamlessly.

• Better testing suite.

• Standard real-time development environment.

• Multiple interrupt priorities.

• Latency verification of code paths.

• More advanced memory management.

Many other enhancements are possible and the
RTAI development team is open to any suggestions
and contributions.

Acknowledgements

RTAI is the collective work of a team of developers
which is built on a tradition of openness and
cooperation. The rapid development of RTAI
under Paolo Montegazza’s lead and its mainstream
adoption are a testament to this effort. Hence, a
special thanks to all the RTAI developers (listed in
no particular order, except for Paolo):

Paolo Montegazza
Stuart Hughes
Lorenzo Dozio
Trevor Wolven
Giuseppe Renoldi
Tomasz Motylewski
Pierre Cloutier
Steve Papacharalambous
David Schleef
Ian Soanes
Emanuele Bianchi
Brendan Knox
Erwin Rol
Karim Yaghmour

A great deal of thanks goes out to all the RTAI
users and supporters who have made this effort all
the while more enjoyable.

References

http://www.aero.polimi.it/projects/rtai/

